
PHYSICAL REVIEW E SEPTEMBER 1998VOLUME 58, NUMBER 3
Orientational capillary pressure on a nematic point defect
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The analysis of some experimental data for the coalescence of two point defects in a capillary tube filled
with a lyotropic liquid crystal shows that before the very interaction starts, defects move under the effect of a
constant force. We suggest that this effect could be due to acapillary pressureand show how it can be justified
by only assuming that there is a slight misalignment from the homeotropic anchoring on the boundary. These
predictions are in good agreement with the data and open the way to further experiments.
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I. INTRODUCTION

Nematic liquid crystals are optically uniaxial fluids. Th
orientation of the optic axis, which may vary from point
point, is usually denoted by a unit vectorn, also called the
director. Points of discontinuity forn appear asdefectsunder
crossed polarizers; they are classified by a topolog
theory, which assigns each of them a relative integer, o
called thecharge~see, e.g.,@1# for a specific reference an
@2# for a review!. Roughly, the absolute value of the top
logical charge says how many times the director field s
rounding a defect wraps about the unit sphere, while the s
of the charge indicates the orientation of this wrapping.

Throughout this paper we employ the one-constant
proximation to Frank’s free-energy functional:

E@n#:5
1

2EBKu¹nu2dv, ~1!

whereB is a cylindrical tile. If the lateral boundary of th
tube enforceshomeotropic anchoring, the energy minimizers
do not exhibit point defects: they are regular fields that
cape along the axis of the tube in either direction. They
often referred to asescapedor fluted orientations and were
discovered by Cladis and Kle´man @3# and Meyer@4#. Since
the two escaped fields are symmetric with respect to
change of orientation along the axis, they store the sa
energy per unit height.

Two differently escaped fields cannot be continuou
connected: thus, when they both appear inside the tube
field must exhibit at least one point defect. Actually, arra
of point defects are frequently observed along the axis
capillary tubes: they alternate in charge and interact w
each other. Often two of them attract, coalesce, and fin
annihilate one another.
PRE 581063-651X/98/58~3!/3259~5!/$15.00
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In this paper we report some experimental data conce
ing the approaching of a pair of defects with opposite top
logical charges along the axis of a capillary tube filled w
lyotropic liquid crystal. The experiment is described in@5#: it
was performed to explore the coalescence between two p
defects, but it also showed another interesting phenome
that is the object of this paper. The actual coalescence
tween two point defects will be modelled and interpreted
@6#.

Here we focus attention on the fact that at the beginn
of the phenomenon the distance between the defects
creases linearly in time. We will show that this is the si
that no mutual force is at work: defects do not interact w
one other, but they move independently under the effect
capillary pressure. To prove this conjecture, in Sec. III w
propose a model that builds upon a slight loss of symme
in the homeotropic anchoring, possibly related to the dir
tion of filling. In Sec. IV, the outcome of this analysis
compared with the data mentioned above: this compari
yields good agreement and thus proves the soundness o
conjecture. Finally, in Sec. V, we propose some directions
further experimental research.

II. EXPERIMENT

During the past year, Hillig and Saupe performed seve
experiments with the aim of observing the coalescence
two point defects that slide along the axis of a capillary tu
enforcing homeotropic anchoring: these experiments are
scribed in@5#. Here we report some of the data for a bina
micellar nematic, containing 49 wt % of the anionic surfa
tant cesium perfluorooctanoate~CsPFO! and 51 wt % water,
which shows a lamellar phase up to 31.5 °C, a nematic ph
with disklike micelles up to 40.1 °C, and which transform
into an isotropic micellar solution above 40.1 °C@7#. For
3259 © 1998 The American Physical Society
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these measurements, small amounts of the mixture w
sealed in cylindrical capillaries~Vitro Dynamics, Inc.:D
5400, 300mm; Fa. Hilgenberg:D5130 mm! to prevent
water evaporation; the capillaries were used without furt
surface treatment and placed into a dish filled with imm
sion oil A of Nikon (nd23 °C51.515) in order to match the
refractive indices. Sequences of micrographs were colle
at certain time intervals controlled by a computer. In orde
obtain well-defined textures, the samples were heated to
isotropic phase and then cooled to 39 °C. There was a t
phase range of 0.2 °C at the isotropic-nematic transition
which nematic droplets developed which fused soon t
Schlieren texture. This texture relaxes within half a day in
the escaped field described in Sec. I and defects arise so
join two differently escaped fields. The time dependence
the distances between defects was determined within an
perimental error of62 mm.

For three tubes with diameter 130, 300, and 400mm, Fig.
1 shows the distanced between the defects versus thetime to
annihilation ta2t; here ta represents theannihilation time.
These data clearly show that at the beginning of the phen
enon the two defects feel a constant force: there is an evi
linear decay of the distance in time. We show that it does

FIG. 1. Experimental data in a tube with diameter~a! 130 mm,
~b! 300mm, and~c! 400mm, showing the distanced (mm! between
two defects vs. the time to annihilationta2t ~sec!.
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result from the interaction of the two defects, which cann
produce a constant force: in this range the interaction for
are screened and defects move independently, each una
of the presence of the other. Our purpose here is to un
stand why a single defect can move along the axis of
tube: as far as the authors know, this phenomenon has
been observed before; in the following sections we prop
an explanation for it.

III. THEORETICAL CONJECTURE

In this section we turn attention to a single defect insid
cylindrical tube and we explore the possibility that it move
In fact, we believe that the uniform motion showed by t
data reported in the preceding section is just the superp
tion of the independent motions of the two defects.

Let r 50 be the equation of the axis of the tube in t
frame of cylindrical coordinates (er ,eq ,ez). Consider a11
defect lying on the axis atz50. We now show that if the
anchoring is homeotropic, then the defect cannot move
fact, we can disregard the problem of modeling the direc
field around the point defect~which is studied, for instance
in @8# and @9#!: for sufficiently high tubes, the structure o
this field just serves to join two escaped fields with differe
directions of bend, precisely as shown in Fig. 2. We imag
that this structure roughly remains the same along all p
sible motions, so that the change in the elastic energy
only come from the growth or depletion of the regions w
uniform fields. Since the two differently escaped fields sto
the same energy density, the elastic energy would not va
the defect moves along with its structure. Hence, no spo
neous motion is possible within this setting, since the def
feels no force.

To account for the motion of a single defect, one has
assume that the above symmetry somehow breaks down
were led to conjecture that the filling of the capillary dete

FIG. 2. The unspecified structure of a11 defect serves to join
two differently escaped fields.
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PRE 58 3261ORIENTATIONAL CAPILLARY PRESSURE ONA . . .
mines a favored direction and produces a slight devia
from the homeotropic anchoring.

A very naive model is the following. Assume that th
lateral boundary prescribes the following anchoring on
director field:

n~R,q,z!5cosw0er1sin w0ez , ~2!

whereR is the radius of the capillary. It can be proved~see
@10#! that there are exactly two stationary fields for the fun
tional in Eq.~1! that obey this boundary condition. We ca
themn2 andn1 : they are obtained by substituting forw in

n~r ,q,z!5cosw~r ,z!er1sin w~r ,z!ez , ~3!

either

w2~r ,z!5arcsinS R2cos2w02~12sin w0!2r 2

R2cos2w01~12sin w0!2r 2D ~4!

or

w1~r ,z!52arcsinS R2cos2w02~11sin w0!2r 2

R2cos2w01~11sin w0!2r 2D , ~5!

respectively. Figure 3 illustrates bothn2 andn1 for positive
w0.

It follows from Eq.~1! that the elastic free energy per un
height is

E252pK~12sin w0! ~6!

for n2 , and

E152pK~11sin w0! ~7!

for n1 . Imagine now a single defect on the axis of a su
ciently high tube: around it the director field has a cert
unspecified structure that remains essentially unchange
time, while far away it escapes liken2 and n1 . Thus the
force driving the defect can easily be computed as the
ference betweenE1 andE2 :

f54pK sin w0ez , ~8!

which is independent of the size of the capillary.
To ascertain whether our conjecture on the loss of hom

tropic anchoring is able to explain the data in the preced
section, we now need an appropriate dynamical model le
ing to the equation of motion for the system of two defec
Here, as in@6#, we employ the dissipation principle recent
proposed by Leslie@11# to rederive the classical theory o
nematic flows. When the hydrodynamic flow is negligib
the rate of change in the elastic free energy is balanced
the dissipationW due to the viscous torques acting on t
director field:

Ė1W50; ~9!

here no account is taken for the kinetic energy since
molecular inertia is regarded as negligible.
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The dissipationW has been computed in@10# by relying
on a model for the field around the defect. For two-po
defects at the distanced in a tube with radiusR, W is given
by

W5
p3/2

2
g1R cosw0$AA~w0!1AA~2w0!%ḋ2, ~10!

whereg1.0 is the rotational viscosity~cf., e.g., Chap. 5 of
@12#!, w0 is the anchoring angle, and

A~w0!:5
11sin w0

12sin w0
$2 ln 22122 ln~11sin w0!1sin w0%.

~11!

Inserting Eq.~10! into Eq. ~9! and using the fact that

Ė54pK sin w0ḋ, ~12!

we arrive at the following equation of motion:

ḋ52
2R

t

4 tanw0

Ap~AA~2w0!1AA~w0!!
, ~13!

wheret :5 g1R2/K is a characteristic time that depends
the capillary radius. Hence we obtain the timet as a function
of d:

t~d!5
t

2R
Ap

AA~2w0!1AA~w0!

4 tanw0
~di2d!, ~14!

wheredi is the initial distancebetween the defects.
Equation~14! holds when the two defects are sufficient

far apart, that is, when their specific structures do not inte
with one another. It is shown in@10# that the interaction
between them vanishes whend exceeds the critical distanc

FIG. 3. ~a! and~b! shown1 andn2 , the two minimizers of the
elastic free energy when the anchoring is not homeotropic.
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dc :52
AA~2w0!pR

cosw0
. ~15!

This conclusion rests on the construction of a model fi
devised in@10# to describe the directorn in the region be-
tween two defects with opposite topological charges. In ot
words, this construction resorts to an axisymmetric clo
surface connecting the defects, which joins a rescaled
caped fieldn1 and a radial tilted field that agrees with E
~2!, respectively inside and outside the surface@see Fig.
4~a!#. The optimal shape of this surface is determined
minimizing the elastic free energy stored in the cylind
when the distanced between the defects is prescribed. F
d.dc the optimal surface reaches the lateral boundary of
cylinder, and the total elastic free energy grows linearly ind.
When the defects are moved apart, the director field chan
all over the cylinder, but there is no energetic change, a
from the one described in this paper, because regions
the escaped fieldsn1 and n2 simply get intercharged@see
Fig. 4~b!#.

According to Eq.~14!, when d.dc the time is a linear
function of the distance, and the slope is a function ofw0 , R,
and g1 /K. Notice that any deviation from the homeotrop
anchoring is crucial here: werew0 is equal to zero, no motion
would be possible. On the other hand, when a deviatio
present, the linear relation between the distance and the
also depends on the material constantsK andg1 , and on the
radius of the tube. It is shown in the next section how th
quantities must be chosen so as to fit the data.

IV. COMPARISON WITH THE DATA

Here we interpret the data of Sec. II by the law~14!. Since
the anchoring anglew0 is supposed to be very small, w

FIG. 4. Cross section of the optimal surface employed to c
struct a model director field between two defects with oppo
topological charges:~a! d,dc ; ~b! d.dc .
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write Eq.~14! up to the first-order approximation inw0 , thus
obtaining

d5
4Kw0

Aapg1R
t1di , ~16!

where we have seta:52 ln 221. The slope of this line in-
creases when the radius of the tube decreases, thus sho
a typical effect of capillarity.

We now perform a least-square fit of the early data in F
1 with a linear function, so as to determine the slope in E
~16!. The outcome of the fit is as follows:

R565 mm:
4Kw0

Aapg1

51.76931029 cm2 s21,

s256.75531029 cm2,

R5150 mm:
4Kw0

Aapg1

53.038310210 cm2 s21,

s254.11731028 cm2, ~17!

FIG. 5. Best fits of the early data in Fig. 1 with the theoretic
law which gives the distanced (mm! between two defects vs. th
time to annihilationta2t ~sec!.
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R5200 mm:
4Kw0

Aapg1

52.246310210 cm2 s21,

s253.15731028 cm2,

wheres is the standard deviation. The agreement thus
tained with the data in Sec. II is shown in Fig. 5. For lyotr
pic liquid crystals it is sensible to assume thatK/g1 is on the
order of 1028 cm2 s21. Taking it exactly as 1028 cm2 s21,
from Eq.~18! we arrive at the following measurements of t
anchoring angle:

R565 mm: w050.048,

R5150 mm: w050.008, ~18!

R5200 mm: w050.006.

It is worth noting that the constant pressure acting on b
defects cannot possibly be interpreted as a long-range e
tric effect, since in lyotropic liquid crystals these effects a
completely screened.

V. PERSPECTIVES

The above analysis opens the way to some further exp
ments. Actually, the experiment described above was or
nally set up to observe the coalescence of two point def
with opposite topological charges, and so no attention w
paid to the role of the anchoring, which afterwards turned
to be crucial. Thus, some questions remain open.

First, with refined optical equipment, it is perhaps po
sible to measure the tilt anglew0 , at least for the smalles
-

h
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ri-
i-
ts
s
t

-

capillary. One could then compare a direct measuremen
the deviation from homeotropic anchoring with the theore
cal prediction made in Eq.~16!. Once the validity of Eq.~16!
is proved for liquid crystals with well-known material con
stants, this law could also be employed to compute the r
tional viscosity of less known liquid crystals.

Second, two defects with opposite charges attract e
other only if the anglew0 has the appropriate sign, that is, th
one which makes the more distorted fieldn1 fill the region
between them. Otherwise, the pressure acting on both de
changes sign, thus forcing them to repel each other. If at
tion is paid to the direction of filling, it could be related t
the sign ofw0 . Maybe a more difficult task would be to fin
a connection between the velocity of filling and the mag
tude ofw0 .

Third, it should be proved experimentally that after a d
fect has traversed a certain region of the tube no other de
traverses it, since the field must have relaxed to the abso
minimizer.

Finally, for liquid crystals with negative diamagnetic a
isotropy, applying a magnetic field parallel to the capilla
axis could decrease the elastic energy stored in the fieldn1

and increase that stored inn2 , so as to fill the gap betwee
them. There should be a critical magnetic field able to s
the motion of a defect: above this threshold, the def
should then start moving again, but in the opposite directi
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